Large-Scale Methods for Nonlinear Manifold Learning

نویسنده

  • Maksym Vladymyrov
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

بهبود مدل تفکیک‌کننده منیفلدهای غیرخطی به‌منظور بازشناسی چهره با یک تصویر از هر فرد

Manifold learning is a dimension reduction method for extracting nonlinear structures of high-dimensional data. Many methods have been introduced for this purpose. Most of these methods usually extract a global manifold for data. However, in many real-world problems, there is not only one global manifold, but also additional information about the objects is shared by a large number of manifolds...

متن کامل

Video Subject Inpainting: A Posture-Based Method

Despite recent advances in video inpainting techniques, reconstructing large missing regions of a moving subject while its scale changes remains an elusive goal. In this paper, we have introduced a scale-change invariant method for large missing regions to tackle this problem. Using this framework, first the moving foreground is separated from the background and its scale is equalized. Then, a ...

متن کامل

Large-Scale Manifold Learning by Semidefinite Facial Reduction

The problem of nonlinear dimensionality reduction is often formulated as a semidefinite programming (SDP) problem. However, only SDP problems of limited size can be directly solved directly using current SDP solvers. To overcome this difficulty, we propose a novel SDP formulation for dimensionality reduction based on semidefinite facial reduction that significantly reduces the number of variabl...

متن کامل

Evaluation of the Centre Manifold Method for Limit Cycle Calculations of a Nonlinear Structural Wing

In this study the centre manifold is applied for reduction and limit cycle calculation of a highly nonlinear structural aeroelastic wing. The limit cycle is arisen from structural nonlinearity due to the large deflection of the wing. Results obtained by different orders of centre manifolds are compared with those obtained by time marching method (fourth-order Runge-Kutta method). These comparis...

متن کامل

A Scale-Based Approach to Finding Effective Dimensionality in Manifold Learning

The discovering of low-dimensional manifolds in high-dimensional data is one of the main goals in manifold learning. We propose a new approach to identify the effective dimension (intrinsic dimension) of low-dimensional manifolds. The scale space viewpoint is the key to our approach enabling us to meet the challenge of noisy data. Our approach finds the effective dimensionality of the data over...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014